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EFFECT OF BODY PERTURBATIONS ON HYPERSONIC FLOW OVER SLENDER
POWER LAW BODIES

By Harorp Mirers and Pininie R. TiorNTON

SUMMARY

ITypersonic-slender-body theory, in the limit as the
Jree-stream Mach number becomes infinite, is used to
Jind the effect of slightly perturbing the surface of
slender two-dimensional and axisymmetric power
law bodies.  The body perturbutions are assumed fo
harve a power law variation (with streamwise distance
downstream of the nose of the body).

The perturbation equations formulated herein can
be used for a variety of problems. In particular, the
effect of boundary-layer development, very small
angles of attack, and nose blunting can be found.
Numerical results are presented for (1) the effect of
boundary-layer development on the flow over two-
dimensional and axisymmetric slender power law
bodies, (2) the effect of very small angles of attack
{on two-dimensional power law bodies), and (3) the
effect of blunting the nose of very slender wedges and
cones.

Differential equations for finding the effect of a
power law lateral perturbation of the centerline of a
slender power law body are formulated.  No numeri-
cal results are given. DProbably, the most important
application of these equations is to determine the
flow about arially symmetric power law bodies at
very small angles of attack.

INTRODUCTION

Inviseid hypersonie flow over slender power law
bodies was studied in references 1 to 3. These
references assume 821, 1/(M8)2<€1l where A
is the free-stream Mach number and 8 is a char-
acteristic streamline slope. Tn the limit 1/(M8)?=
0, the shock shape and body shape are similar and
the equations of motion can be reduced (o a set of
ordinary differential equations.  Numerical solu-
tions of these “zero-order’ equations are tabulated

in referenees 1 and 2. Approximate analytical
solutions are derived in reference 1. The first-
order effect of small but nonvanishing values of
1/(M8)? is also found in references 1 and 2 by ex-
panding the equations of motion in terms of
1/(Ms)2.

In the present paper attention is restricted to
the limiting case 1/(M8)2=0. Two-dimensional
and axisymmetric body shapes of the form!
ry~r"+ex®*t™ are considered where 7, is the body
ordinate, r is distance from the nose (in the free-
stream direction), m, N, and e are constants, and e
is small. Tor e=0, the body is of the simple
power law type considered in references 1 {o 3.
The flow corresponding to e=0 is termed the
“zero-order” flow herein and may be found from
the zero-order solutions presented in references 1
and 2. For e small, but not zero, the additional
{erm ex¥ ™ represents a small power law perturba-
tion of the zero-order body shape. The solution
for the resulting flow field perturbations is termed
the “perturbation solution” and is the subject of
the present report.  The equations developed
herein ean be used to find the effect of boundary-
layer development, very small angles of attack,
and nose blunting on slender power law bodies at
hypersonic speeds.  Numerical results are pre-
sented for a variety of cases.

Tt should De reealled (e.g., ref. 1) that the
assumptions incorporated in hypersonic slender
body theory are violated in the immediate vieinity
of the nose (#=0) of slender power law bodies
(exeept for wedges and cones).  Henee, the solu-
tions found herein are not expected to be valid at
the nose. However, they are expected to be valid
downstream of this region.

t A more specifie representation of the body shapes considered herein is
given by cqgs. (13) and (G3u).
1
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ANALYSIS

The equations of motion for hypersonic (low
over slender bodies are utilized to obtain the
zero-order and perturbation equations for hyper-
sonic flow over slightly perturbed power law
bodies. Expressions for shock shape, pressure dis-
tribution, and drag are then noted. TFinally, an
analytic solution of the perturbation equations is
given for one class of perturbations. A numerical
solution of the perturbation equations is required,
in general. Symbols are listed in appendix A.
Many of the details of the analysis are relegated
to appendixes B to H.

HYPERSONIC SLENDER BODY THEGRY

The cquations of motion for hypersonic flow
over slender bodies (e.g., ref. 4) are summarized
in this section. The equations are applicable pro-
vided that 82«1 and 1/(38) <0(1). The sum-
mary is the same as that given in reference 1 and
is repeated here for convenience.

Dimensional variables are barred herein (%, 7,
T, T, cte). Seefigure 1 for some of these quantities.

F, v
V\f=/?(7)
pest N B
Shock 2 7 = RglR)
7~ -
/ AU
4 F7, (F) °
7" Body- e
T == r=r'bo(i)7 }
o i, |

<

¥
™~

|

Fiaure 1. -Physieal quantities for study of hypersonic
flow over slightly perturbed power law bodies.  Subseript
zero_refers to unperturbed power law body. Note,
d=Ry(L)/L.

Let 8 represent a characteristic body or streamline
slope and /L represent a characteristic streamwise
length. Two-dimensional and axisymmetric flows
are considered, with (F7) and (%,7) being the
streamwise and transverse coordinates and veloe-
ities, respectively.  In order to obtain the hyper-
sonic slender body equations of motion, the follow-

ing nondimensional quantitics are introduced

(Tollowing ref. 4):
r=7/L
r=7/L3

u=(u—u,) 8
ET TR )

The body shape and shock shape are denoted by

1= DivM8 .,
i fil 14} )
PT PP

Fo=T,(T) and R=R(@), respectively, so that

I‘D:—FD,/T,B R: [_f/ié (2)
Tf these quantities are introduced into the equa-
tions of motion, and terms of order 8 are neglected
(compared with 1), the hypersonic slender body
cquations are obtained.  These ave (ref. 4):

Continuity:
o} .
+ Lo (30)
r-Momentum:
dr, Oy, 0p .
Euergy:
dlple™) | O(ple™) o
Y ¢ or =0 (3¢)

The boundary conditions are:
Al body surface:

T2 =%’% (40)
Upstream of shocek:
Uy =04 =0 4
Pa=11AR) (40)
po=1 (4d)

Downstream side of shock:

vs=;/%T (Elf[ (‘Uz 1[6 ] (4e)
p“z'yil ((Iill?) [ ( ~7) (”? ‘[6>:I (4
D) ] o

Tere ¢:=0 for two-dimensional flows and ¢=1 for
axisymmetric flows, This system of equations
can be solved independently of the r-momentum
cquation, and therefore the latter is neglected.
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In the present report it is further assumed that
1/{5)2—0 so that equations (4¢) and (4¢) to (4¢)
become

Pe=0 (5a)

2 dR o

l's—m dr (5b)

2 /diy -

Ps=m (*(17 (5¢)

ps:('yir—l- (5d)
vy—1

FLOW ABOUT SLIGHTLY PERTURBED POWER LAW BODIES

The hypersonic slender body equations of the
previous section are now used to find the hyvper-
sonie flow over slightly perturbed slender power
law bodies. The limiting case 1/(M3)2-»0 is as-
sumed. Note that etther the assumption that
21 or that 1;(M8)2->0 is violated at the nose
(z==0) of a slender power law body (except for
wedges or cones) so that the solutions found herein
are not expected to be wvalid in the immediate
vieinity of the nose. TTowever, they are expeeted
to be valid downstream of this region.

The zero-order hody shape and shock shape can
be expressed as (from rel. 1)

75 0(Z) =y o7 (Ga)
Ry(@)=Cm (6b)

where 7,4, €, and m are constants. For the
remainder of the report the characteristic length
Lis taken to be the streamwise length of the body,
while the characteristic slope is taken to be the
zero-order shock ordinate atT= 7, divided by T, or
Ro(L)

) =
L L”Ib,o

)

Equations (6) can then be written, in nondimen-
sional form,
Tp,07= Np 0d™ (8a)

The zero-order flow field is the same as that of
references 1 and 2 and is considered known.  The
constant n,,, which is the ratio of the zero-order
body ordinate to the zero-order shock ordinate, is
denoted by the symbol 5, in reference 1 and is
tabulated therein for various values of v, o, and m.

The present problem may be viewed as that of
finding the flow field associated with shock shapes
of the form

R=am (13- eaa™) )]

where ¢, @;, and N arc constants and e is small.
To effeet a solution, new independent variables
are infroduced according to the relations

E=rx
oy (10)
77_1?—0‘—J_m
so that
o_0 mno
or Ot & On
(11)

o 10
o £ O

These are the same independent variables used
in reference 1. The zero-order shock loeation
corresponds to 7=1 while the zero-order body
location corresponds o 9=n,, In the new no-
tation, equation (9) becomes

R=g"(1-+eat")

The boundary conditions (eqs. (5b) 1o (5d))
suggest the following forms for the dependent
variables:

(12a)

r=m& et et¥es) (12h)
p—miE "D (Fot e T (12¢)
p=v¥ut ff‘\'% (] 2d)

where ¢, F, and y are functions of 4 and the sub-
script O indicates the zero-order solution.  The
subseript 2 is used for the perturbation solution
to avoid confusion with the first-order solution of
reference 1.

The body shape, consistent with equations (12),

18
Tb:Im(ﬂb.0+€fN) 6<1 (]351)
ro=a™(ex™) /ot g=1 (13b)
where
2 1
=i ()

Equations (13) follow from equation (4a) and
the asymptotic form of equation (12b) near
0. (See appendix B for further discussion.)
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For problems wherein the body is presented,
equations (13) arc used to determine e and N,
For these problems the constant a; in equation
(12a) is initially unknown and is found as a
consequence of the solution,

Substituting equations (12) into equations (3)
and collecting terms of order ¢ and ¢ yiceld the

zero-order and perturbation equations, respec-
tively, which are summarized as follows:
Zero-order equations:
Continuity:
(oot Yoot o [Pp’%:() (14a)
p-Momoentum
R 1
(soo*n)soo-i-*"—(oJr ) Bey=0 (14b)
Yo 2
Energy:
Fo_ _
(¢o—m) (\Fo—v %)—(aJr NB=0  (14¢)

where primes indicate differentiation with respect
to ». The boundary conditions at n==1 arc

eo(1)=14(1)=2/(v+1) (15)
Yo(D)=(r+ 1D/ (y—1) ’
Equations (14) and (15) completely define the
zero-order flow field,  The body location is found

from the tangency condition (eq. (4a)) which,
for the zero-order solution, becomes

@0(18,0) =100 (16)

Equation (16) is, in fact, the basis for determining
Mo The zero-order solution is discussed in
references 1 and 2.

Perturbation equations:

, o ! 1
& (¢0+ ) & :77 ‘p +‘P0 (0-+ )l"'
77"#0 ’l/n n— 990

—

%‘;:0 (17a)
G 1 Ry ("‘”T(g““>"”5 o
1—e (n—e0)® o I 1= 1@
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Fy __+( %_5) ¢ ‘Pu (o4 1)u ]
F, n—¢ % ¢ ‘l/n
"l o l’n
where
__! N
#_a+l m
The boundary conditions at y=1 are (eqs. (B3)
and (B6))
5 (1) 2 ,
e 2 i) (8
F,(1) , )
A S+ D=y (s))
(1) ;.
(0 (180)
2
where, from reference 1,
. 1 ) .
‘P0=mz By+1) (e+1) B—407]
Fiill)=—F— [(2y—1 1
=y o (=D 1) (o410 8
—20y (y—1)]
Yo(1)= B (y4-1) (04+1) B—20 (v—1)]

)

When a body shape is specified, the constant a, is
initially unknown. Tts value must be such that
the tangent flow boundary condition at the body
surface, namely (egs. (B11) and (B16)),

e2(m0)=(0+1) (y+w—8y  B1 (19a)

HL,T (o) =(y+vu—1D/y B8=1 (19b)

is satisfied.

Since the unknown constant a; appears in the
boundary conditions at =1 (eqs. (18)), it is not
possible numerically to integrate equations (17),
starting at =1. However, if vqua(ions (17) are
cach divided by as, the quantities ¢y/a,, Fi/a,
and y./a; can be considered as the dependent
variables, and a numerical integration of equations
(17), starting from n=1, is then possible (using
the boundary conditions listed in egs. (18)). The
numerical integration cannot proceed all the way
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to ;¢ since the differential equations are singular
at that point. Tnstead, the numerical integration
is terminated at some point near 7,0 for which
the asymptotic solutions derived in appendix
D are valid. If the values of ¢.fa., Fijas, ¥./as,
n— @0, Yu, Iy, and 8, (defined inref. 1 and appendix
D) are known at this point (from the numerical
integration), equations (D7), (D12), or (D17) (de-
pending on whether 0<g<{1, B=0, or =1,
respeetively) ean be solved 2 for the constants as,
I, and ). (The constant a, is introduced into
equations (D7), (D12), or (D17) by replacing
@2, ¥u, and I by ax(e./ar), a.($ufay), and a,(Fylay),
respectively.) When B and D are known, equa-
tions (D7), (D12), and (D17) completely define
the flow in the vicinity of %,,. When a, is
known, the dependent variables of the numerical
integrations ecan be converted baek to ¢, ¢,
and F, and the solution is complete.

EXPRESSIONS FOR SHOCK SHAPE, PRESSURE DISTRIBUTION,
AND DRAG

Expressions for shock shape, pressure distribu-
tion, and drag arc summarized in the present
section in terms of dimensional quantities. The
cases <1 and B=:=1 are treated separately.

Case 3<1.—The zero-order body is of the form

Too(2)=m o Ca™ (20a)

which defines C for a speeified bady.  For a power

Iaw perturbation
7h; 0 (L)

which defines e for a specified body perturbation,
The corresponding shock shape is

— |:1+e(l>< )‘J (21)

2 If the Ieading term in B is the only term retained in the expression for
Fs and if the leading terms in o1 and B are the only terms relained in the
expression for ¢g, there results

7(T)
Tool®)

(20h)

1{(.1‘)

Tb,o .-’)

oDty B)/*/

_+u(n o) ) a1

(y—B)Fo \ a3
(ytyu—1)/y
[ +P(n e F» p=1

(y—1)Fo a

- @ P
B~n—sra A=t
for n near ne ..
227924 60 —-2

OVER SLENDER POWER LAW BODIES D

where the zero-order shock shape is Ry(E) =
CE”’:;'.L?,O(E)/"’LD'

The local pressure coeflicient, at any point, is
(from eqs. (1), (5a), and (12¢))

G L]
e ()]
(T (]

In appendix C it is shown that
Folm) =Fo(m.0)
Fy(ny) =F,y(m o) (23)

8o that the pressure at n,, is the same as that at
7 lor a given . Using equations (22b) and (23)
gives the pressure cocflicient on the perturbed

body:
Fy(n,.0) ( V:I o
4
“o(75,0) I> 1)

('p,b __‘2F0(77h,ﬂ‘)_ [] e
Alternative forms can also be deduced.

P"‘ P

1 (llbo

=9
Mo, 0 d»"

(22¢)

(d7y,o/dT) 7 N30

The forebody drag up to station T can be found
by integrating the pressure distribution along the
body surface. This is done in appendix E and

the result is (from cq. (E4))
DT _ 2Fu(n.0) {(E)m(u+3)-2
2rom3qe2[F, o(L)]7+! mic+3)—2 I
L dm(at3)=2 [
m(o-+3)— 24N LFy(m,o)

+(a+1‘)(l+u)](E)"”’”’_M} 25)
Mh0 L

Equation (25) is valid provided that
m>2/(e+3)
N>2—m(c+3)

Equation (26a) corresponds to 8<1, which is the
case under consideration in the present section.
For ¢=0, equation (25) assumes that the body 1s
symmetric about the T-axis. The overall fore-

(26a)
{26b)
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body drag cocflicient, referenced to the cross-
sectional area of the base of the zero-order body, is

D)
Zl—aqu[?'n'0<7':)]a+l

2o+ 1lyy 152F0(m, o) 4 flmlot3) =21
= T m(e+3)—2

rz(ﬂb 0)

CDE

efm(o-+3)—2]
m(oc+3)—2+N

('o+1)(1+u)]} -
ru ﬂb,o)r Ms,0 (2‘)

When the perturbations are due to boundary-
layer development on the zero-order body, the
pressure drag on the zero-order body can be
found from equations (25) and (27) by omitting
the term (o+1D (1w /750

The drag can also be found from consideration
of the energy of the transverse flow field (refs.
1 and 2). This is done in appendix K. The
resulting expressions for drag (egs. (E11) to (E17))
are more general than equations (25) and (27)
since the former can be made to apply for all
values of m and N,

Case 8=1.,—For B=-1, the zero-order flow cor-
responds to flow over a flat plate (¢=:0) or cir-
cular eylinder (e=1) of semithickness, or radius,
equal to 7x. If the nose drag at 2=0 is known,
and is denoted by Dy, the zero-order shock shape
is given by (ref. 1)

R (a—l—?)q(w 1/{0+3) 2/(a+3)
R [ 7 ] () o

where (‘DN_DA/Z‘ wq(Fy)°t? is the nose drag
cocefficient and I is tabulated in reference 1 as a

F
A

al

™|
i

l
=

(a)
Perturbed constant-energy flow. (Flow due to drag im-
pulse at T=0 plus perturbations assoeiated with 7,()).

SPACE ADMINISTRATION

F

(b)

Equivalent physical flow.

function of ¢ and v. The body shape can be
expressed as (from eq. (13b))

N/ e+ 1)
LG e

which defines e and N for a specified zero-order
flow and body perturbation, The body ordinate
73(T) is measured from the surface of the zero-
order body (sketches (a) and (b)). Skelch (a)
is the hypersonic-slender-body-theory idealiza-
tion of the flow pictured in sketch (b). Hyper-
sonic slender body theory gives a poor represen-
tation of the flow near 7=0, as previously noted.

From equation (29) it is scen that e(F/L)V=

[7o(F) /[Ro(®).  The perturbed shock location
can then be expressed as
R @) (70(}) )"‘“
+(12 __ (30)
R@ Ry (x)

From equation (22¢), the pressure cocfficient on

the body is
Co T2(0)< )“]
=t — =2 F,(0) - (31
dn/dm? " [ CFRO\R, @) )
The forebody drag up to station ¥ is, for N >0
(from eqs. (E7) and}(28))

- (AL F0) /T N
D(x)—Dy| 1+ GUEL LAY i A 32
(-[,) .\[ +— M(0'+1)] ([lo(‘”)) ] ( )
The perturbation solution is valid provided
Fo@ Ra@®] 1.
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SOLUTION FOR N=90

When N=0, the solution of the perturbation
equations can be found analytically in terms of
the zero-order flow. The procedure is as follows.

For a shock shape given by

R=r"(1+ea,) (33a)

the perturbation equations and the boundary
conditions at the shock are satisfied by

& e g (33b)
a;
C 2F,—qF} (33¢)
(£}
&=—n% (33d)
a,

Note that Fy(ny,o)=2a:Fy(n,,0) since Fy(n,,e)=0.
For <1 the boundary condition on the body is
satisfied if (eq. (B9)

ﬁl’z(’?o, u): 1‘90(,1(710. 0) (34)

Evaluating equation (33b) at 5, noting @,(n.o)
=1s,0, and substituting into equation (34) then
give

a;=1/n, iz (35)

For g=1, the shock perturbation AR may be
considered as due to a body perturbation A7y.
From equation (28)

Al oty (30)
n 6—{-3 I

But, from cquation (33a), AR/R=AR/R = ea,.
Substitution into equation (36) then gives

—_—— B=1 (37)

The present solution results from the fact that
for N=0 the perturbed shock and body follow
the same power law as does the zero-order flow.
The resulting flow can in fact be treated as a zero-
order problem. However, the solution is uscful
for making a partial check on calculating machine
programs (when the latter are used to obtain
numerical solutions of the perturbation equations)
and for providing additional data when tabulat-
ing a; and Fy(n, ) as functions of g, v, ¢, and 8.

NUMERICAL RESULTS AND DISCUSSION

The equations of motion have been integrated
numerically to determine the effeet of (1) boundary-
layer development, (2) very small angles of attack
(for ¢=0), and (3) blunting the nose of very
slender wedges and cones. The results are dis-
cussed herein.

EFFECT OF BOUNDARY-LAYER DEVELOPMENT

The boundary-layer displacement thickness §*

on a slender power law body at hypersonic speeds

is derived in appendix F. The result shows (re-

calling that the superseript bars have been omitted
in eq. (F13))

J (] +JI—1\_ Ji 3
vy—1 w A, ( )
'7’)’\ r.z ov ro(’?b o) Mo )’n<UTI)_1

(38)

&
L

where R.7=p.1 [/uw, w=T, u(,Tym—contht
and gz, is free-stream viscosity. The quantities
J, and (J + J5)/J; can be found from table T for
specified

oy 2med)—1 gy (o 1)(4—B)—2
(39a)

:('}lsl‘)'l‘

() w

_stagnation enthalpy of fluid at wall
“stagnation enthalpy of fluid in free stream

(39b)

For 0<8<1 and ¢=0,1, the quantity Zi varies
between the limits 03552(7—1)/’}'. Table T is
based on the numerical results of references 6 to
8. The assumptions involved in the derivation of
cquations (38) and (39a) are noted in appendix F,
Equation (38) is notl valid for ¢—1, =1 as dis-
cussed in appendix F. _

The effective body shape i1s 7,=7F, o+ 6*. TFor
5* small compared with 7, the effective body
shape can be expressed as

3 2m
ry=a" (77!) 0+€7'2_ ) (40)
Thus, for

where e is found from equation (38).

{his case,

3 1
S Ty (41
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The perturbation cquations have been integrated
numerically for ¢=0,1; v=1.15, 1.4, 1.67; =0,
%, 4, %, 1; and values of u defined by equation
(41). The case o=1, =1 is excluded. The
results are given in table TI.

For m=% (.c.,, x=—0), the perturbed shock
shape and body shape are similar, hoth following
the % power law variation of the unperturbed flow.
This fact was used in references 9 and 10 to study
boundary-layer development at hypersonic speeds.
For this case, the perturbation solution is given by
equations (33).

EFFECT OF VERY SMALL ANGLES OF ATTACK (FOR 0-0)

The effect of very small angles of attack on two-
dimensional power law bodies at hypersonie speeds
can also be found. This is done herein.

If a two-dimensional power law body is at angle
of attack «, the equation of the upper surface
becomes 7,=1, o T"— &, OT

Tb:rm(nb.o‘ji’éfl_m) (42)
where
e=—a/d
Assuming <1, the resulting flow (in the upper
half plane) can be found from the perturbation

equations with
p=p/2 (43)

Numerical solutions have been obtained and these
are tabulated in table T, For p=8=0, equations
(33) apply.

The lift per unit span can be found by noting
that the perturbation solution is antisymmetric
about the T-axis. The local 1ift coefficient is then

A(’p,bE(('p,h)botmm_'(('p,b)top

= 44677)252]:'3(‘117),1))]""_1

The net 1ift per unit span 7. is (for m#=0)

1
[ Ac, pdr
JU

=—4emd?LqFy(ns.0) (44)

i:ql,

The lift cocfficient, referenced 1o 7, is (recalling
EE—OZ,‘I&)

~

Pl

C,= q——-—4€m52Fz(7}b,o)

=4mdl(n,,0) (45)

>~

v A -
The moment about the leading edge 11 is

_ 1
S1=qT7 | 2(ac, ) dr
q o

i
Tntegration yields

AT m? \
—742—9,—4 1Tm 0F, (.0} e (46)
The center of pressure Tf_,,,sz,«'f, is then given by

Tor

7 m-1

(47)

The lift problem, for o=1, is formulated in
appendix G. Tt has also been treated in reference
11 using Newtonian theory.

EFFECT OF BLUNTING THE NOSE OF VERY SLENDER WEDGES
AND CONES

The effect of blunting the nose of very slender
wedges and cones is now considered. It is as-
sumed that the wedge or cone is sufficiently slender
so that the major contribution to drag is duc to
the blunt nose. The zero-order flow is then a
constant energy (8=1) flow. The divergence of
the body downstream of the nose induces a small
perturbation in this zero-order flow,

Sketeh (a) indicates the flow field considered,
and sketeh (b) indicates the corresponding physi-
cal flow. TIn the present example, the body shape
is given by

Ty=8,T (48)

where 7, is measured from the surface of the zero-
order body (sketch (b)) and 8, is the semivertex
angle of the wedge or cone.  From equations (13b)
and (48) it follows that

i
=7y (49)

for the present problem.  The equations of motion
have been integrated numerically for p=(c+1),2;
B=1; o¢=0,1; and »=1.15 14, 1.67. The
results are given in table TI. The shock shape,
pressure distribution, and drag can be found from
equations (30) to (32). The solution is valid
provided that (r,/I2y) <.
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Define the following quantities:

1
263 \+ I}
:<('7”N) ;7'—‘_

% {(50a)
RE

_ 982 No+l § 7
=_ (,—}51) 22 (50D)

(, “.V, rf\"

1

) g m

,7% [~ (q}f?,] (50¢)

where A is a function of v,s. Equations (30) and
{31) can then be writfen

- 2 R 1 = ﬂ atl
K(I}'oﬂ{ 14 ”2[1_{ (}‘)aﬁ] } (51a)

Sy ¥q+l 2
oo | 283 f'+~“:|
(2

82 +3
7 ”)r‘] =a+ll ol _
/«jfm |7 (1b)

{1+

=

)
1

The quantities R and ¢, /83 are functions only of
z for a given o,y.

The problem of a blunted wedge or cone has also
been treated by Chernyi in references 12 and 13.
An account of his method is given in appendix 1.
The method is approximate, but becomes more
exact as y approaches 1. It has the advantage
of not being restricted to small values of ¥ as is the
perturbation analysis of the present report.
Chernyipresents curves of shock shape and surface
pressure distribution against T for =14 and
o=0,1. Chernyi’s equations are solved analyti-
cally for small 7 in appendix H, and the resulting
expressions for K, a,, F,(0), and F,(0) are compared
in table TIT with the numerical results of the
present report. The agreement becomes poorer as
v departs from 1, particularly for Fy(0) and a,.

Lewis Rusesrncn CENTER
NATIONAT, AERONAUTICS AND SPACE ADMINISTRATION
CLEVELAND, Omio, May 22, 1959
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APPENDIX A

SYMBOLS

constant defining shoek perturbation
(eq. (9))

constant (eqs. (6))

drag cocfficient (eq. (27))

drag coeflicient for impulsive drag ad-
dition at T=0 (eq. (28))

local pressure coefficient

impulsive drag addition at T=0

forcbody drag up to station
pressure similarity variables
(12¢))

a constant (egs. (D6b), (D1ib),
(D16b)), or ratio of stagnation
enthalpies (eq. (F3b))

wall- to free-stream stagnation en-
thalpy ratio (eq. (39h))

stagnation enthalpy

function of ¢,y tabulated in ref. 1

quantitics  defining  boundary-layer
thickness (eq. (F9))

streamwise length of body

free-stream Mach number

zero-order power law exponent (eq.
(6))

perturbation power law exponent de-
fined by equation (9)

Prandtl number

pressure

dynamic pressure, o, u%/2

lateral coordinate of shock

lateral coordinate (normal to z-axis)

lateral coordinate of body

semithickness or radius (at T=0) of
blunt-nosed two-dimensional or axi-
symmetrie body

temperature

velocity in z-direction

veloeity in z- or 7-directions

velocity in 6-direction of c¢ylindrical
coordimale system

Cartesian coordinates with ¥ in stream
direction and origin at nose of body

angle of attack

alternative zero-order shock shape pa-

1 f
raneter, Q(I—H—I)// (e+1)

(eq.

*

8
¥
8
5

60(_77)

aQ i wl

eo(n) ,tpz('fl)
Yo(m) ¥aln)
Qo)
Subseripts:

b

b,0

g oo w

Sl

)
0

Q)

eq. (F6)

ratio of specific heats

characteristic slope, 72o(L)/1.

boundary-layer displacement
ness

thick-

small quantity, defined by eqs. (20b)
and (29) for speeified body per-
turbation

lateral coordinate similarity variable,
r{Ry (eq. (10))

740/ l, tabulated in ref, 1 as function
of v, o, and g (denoted by g,
therein)

cylindrical coordinate (sketch (e), ap-
pendix G)

zero-order stream funetion similarity
variable (eq. (D1))

alternative perturbation power law ex-
ponent (eq. (17))

free-stream viscosity

r (cq. (10))

density

0,1 for zero-order flows that are two-
dimensional or axisymmetrie, re-
speetively

similarity variables for ¢ (eq. (12h))

similarity variables for p (eq. (12d))

similarity variables for w (eq. (G5))

quantity evaluated at perturbed body
surface

quantity evaluated at zero-order body
surface

quaniity evaluated at (or just down-
stream of) perturbed shock

zero-order solution

perturbation quantity

undisturbed free-stream value

Superseripts:

barred quantities are dimensional

unbharred quantitics are nondimen-
sional (cqs. (1))

primes indicate differentiation with
respect to g




APPENDIX B

BOUNDARY CONDITIONS AT 3=1 AND 35-=3,, FOR PERTURBED FLOW

It is convenient to satisfy the perturbed flow
boundary conditions at the zero-order shock loca-
tion (p=1) and at the zero-order body location
(m=mnne). The appropriate boundary conditions
are found herein.

Boundary conditions at n=1:

3!

R=£M( +ea,
r :Per?urbed shock
\ n =1+ e02€,v

()

The zero-order shock loeation is at »=1, while
the perturbed shock is at g=1-4ea.t", as indicated
in sketeh (). The flow on the downstream side
of the perturbed shock (denoted by subscript s) is
given by (from egs. (5b) to (5d) and (12a))

 — 2 m—1 _,, s
Zs_'H 7 mE |:1+e(l: (1+ ) :I (B1a)
Pe= (mgm1)* |:1+9erl., <1 +]_\') 5“’] {B1b)
S ’ B m,
YAl »
=2 {Ble)
Let =0 be the variation, with 5, of any

flow quantity, at a fixed station £ Expanding in
a Taylor series aboul n=1 then gives

QIm=Q()4 () (g—1+ ... (B2

If » is taken to be the perturbed shock location,
1 +ea, gy, equation (I32) becomes

Qs= Q) +et™ G'(1)+ . . . (B3)

Consider @ to be the transverse velocity r. Equa-

tions (12b) and (B3) then yield

U= W?Em_l{[(tpo(])“‘Lff‘v@z(])]‘}‘fazf‘wﬁﬂ(’)(l)—}‘ .. }
(B4)

Equating equations (Bla) and (B4) and collect-
ing terms of order e yield

_21‘ (l AY)_%(I)

Similarly, identifying @ with p and p yields,
respectively,

(B5)

F)__4 (| N
‘”“——wm (Bob)

Equations (B5) and (B6) give the boundary con-
ditions on ¢,, I, and ¢, at y=1 and appear in the
body of the report as equations (18).

BOUNDARY CONDITIONS AT n=n».0

The boundary condition that the flow veloeity
be tangent to the body surface, ry=dr,/dg, is now

considered. The cases 8<1 and g=1 are treated
scparately.
Case B<1.-—The zero-order body is located at

n=mnup, while the perturbed body is located at
=10+ e£Y as indicated in sketeh (d).

N
" b=¢"(m, +e€)
1 <Perturbed body g
AN . N
N T ot et
\\ *
N
N
~
\\ — - - m
— AR/ f
< 50 50
~~ “-Zero-order body
= ﬂb,o
¢

(C))
1
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Expanding equation (12b) in a Taylor scries
about 7,4, at constant £ yields

v =mE" ot etV pa)gmn, = ME " {{ou(n0,0)
+<P0'(7)b,o)ff'v+ .. -]”!‘EEAsz(ﬂb,o‘)‘F e

Em(ﬂb,o’§ EEN)

(z{rgb Em 1 [nh Q+G (l_i‘ )g\] (BS)

Equating equations (B7) and (B8) and collecting
terms of ¢ then give

b(B7)

But for r,=

N,
‘102(.’70.0):1‘1”%_‘#0(7717,0) (BQ)
For <1 (from ref. 1)
om0 =1—"=F (7 1) ®10)

Substitution of equation (B10) into cquation (B9)
yiclds

ea(np0)=(e+ 1) (v +vu—B)/y (B11)

which appears as equation (19a) in the body of the
report.

Case f-==1. TFor B=1, the zero-order bhody
shape is 75,4=0, and the perturbed body shape is
taken to be of the form

r,,:E”‘(e N)I/(¢+1)
o= ('GEN)I/(a-H) }

Expanding in a Taylor scries about 7,,=0
1 2 %o J .

(B12)

and noting V= (V) 97 permit 2, to be
written
v =mE gyt EE‘YSOzT‘,,:,,b
=l (0) i (0)(E D ]
+(e£N)V T [nfpa(m)] }

1 1
.(ﬂ_msm l[:(1+o ] Tn

Equating cquations (B13) and (B14), noling
2o(0)=0, (0)=1/y (from ref. 1), and collectling
terms of order (&™) @+ (hen yield to this order

(B13)
But

g\)l/(.ﬁ 1):| (B14)

n5p2(mp) = (y+yu—1fy (B15)
From equation (D18) it is seen that equation (B15)
can also be written
lim (n'gp) = (y+yu—H/y (B16)
n
which appears as equation (19b) in the body of the
report.

It was necessary to take r, of the form indicated
by equations (B12) in order that equations (B13)
and (B14) beconsistent.  Conversely, the required
form for r, could be deduced from equations (B13)
and (B14). That is, let r,=§"(e£Y)* where k£ 1s an
unknown constant, Using this expression in
equations (B13) and (B14) and noting lim 97¢a(n) =

7-30

constant (from eq. (D18)) then show that these
cqualions are consistent only when k=1/(o-+1)




APPENDIX C
PRESSURE DISTRIBUTION IN VICINITY OF BODY SURFACE

The pressure distribution in the vieinity of the
body surface 1s now considered.

The local pressure is given as a function of F,
and F, by equation (12¢). Expanding in a
Taylor series about 7, , shows
Fo(ns) -+ e Fy (n) = [Fo (my,0) +-F (M5,0) (15— "5,0)

+ . e [Fo(mo)+ . .1 (CL)

527924—60-—3

Noting Fo(ns,0)=0, from reference 1, and collect-
ing terms of order & and € yield

Fo ("'b) :Fo (ﬂb,o)
Fz (ﬂb):Fz (”Io,o)

Thus, the pressure at 7, is the same as that at
15,0 (for cach value of £). '

(C2)

13



APPENDIX D
SPECIAL INTEGRALS AND ASYMPTOTIC SOLUTIONS

In the present section the perturbation equa-
tions of motion are written in a form wherein the
dependent variables are ¢./(n—eo), FofF,, and
Yo/, Some special integrals are then obtained.
Finally, asymptotic solutions, valid near n=1ns,
are found.

Following the procedure used to derive equations
(55) in reference 1 allows equations (17) to be

written, respectively,
-0
>+ n(5)

(ﬂfgﬁﬂo> ) ﬂ (D]&)
(8 (5 >+“’°<,,>

i B 1+‘70' 26,8,
BRI Ky <of)](n p
+nr R ‘ﬁz) 0 (D1b)

Fo o
6(, >0

o, Y ~(5) +en 22 r-

where 6, is a stream function similarity variable
defined by (ref. 1)

HOE&!‘])[(U—%I) 1 ‘1_”"]

7 9o

(The zero-order quantities ¢, Fy, and ¢, are
expressed in terms of 6, in egs. (40) of ref. 1))
Integration of equations (Dl1a) and (Dle) yields,
respectively,

5”2 [z u e dg, nIPM
n— (1+I-‘)0f ¢00(1,+“+E200

Yo
(D2a)
and
Fz___ P2 e dby
P B autr—8) 05 |2 S Gy
(D2b)

where E, and @, are constants. The latter equa-
tions correspond to equations (56) in reference 1.
14

Elimination of the indefinite integral between
equations (D2a) and (D2b) yields the following
speeial integral (of the continuity and cenergy
equations):

+(pty—8 &—(l+p) &:(constam) 04
Yo F,
(D3)

where the constant can be evaluated in terms of the
boundary conditions at 3=1. If u=8 (i.c,
N=2(1—m)) and the subscript 2 isreplaced by the
subseript 1, the above equations become identical
with the corresponding equations in reference 1.

Asymptotic solutions of equations (D1) valid
near n=mn,, (i.c., §,=0) will now be found using
the procedure of appendix D in reference 1.
Assume ¢,/(n—¢,) of the form

Bﬁ?
n—¢o

# pI(N—p) L+ (N4 P—

— M54 ...
17— o0 p)M854 ]

(D4a)

where ]:7, P, L,, and M, are constants. The cor-
responding values of . and F, are then (from
egs. (D2))

j; B[N )L+ (NP TMGE+ . 1+ Bt
(D4b)
Fo_gor o
7=t N v—pL,
P (R P1)—BIMEE ... )Gt (Ddc)

Appropriate values of N and P as well us the ratio
M,/L, can be found by substituting equations (D4)
into the momentum equation (eq. (D1b)) and con-
sidering 8,=0. This will be done for 0<{8<1,
8=0, and =1, respectively. Since equations
(D1) are equivalent to a third-order linear equa-
tion, three independent asymptotic solutions can
be found.
CASE 0<8<1

In the vicinity of 8,=0, equation (D1b) becomes

d(Fz/Fo) 1377b 0

Fz )
== 0 D
dés QFO\ Ns.0) \Fo (D3)
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Substitution of equations (D4) into equation (D5)
yields the following three independent solutions:

(1) For A‘wr:—‘ iy‘_—B)J PZ]: E2:G2:O: Lzz
Y
—vLon1, My=+M, ;:

(=t
e Gty L
+ (B—~yu) 3[2.100"{‘ . ]

ﬂL2,1+(’Y+B) 4‘12,100

voa_ (57 [
o =0, [

o > (D6a)
_(=£
E;;_I:_go ( v )(04—725‘[2,190*% ce)
o
A[z 1 —Bﬂ
L2 1 ‘)'YFO (nb 0)
=f 4

(2) For N=0,P=1, E,=G,=0, L,=— [,y :

w_z’fl =ply o+ (1—p) My 0+ . .. W
n—¢o
Vaa Y F
7—_L2.2+2I-‘i[2_200+ ..
()
F >
132——(7 B) Lz 2‘*‘(2)’ B) M, B+ .
Mo (y—8—1) é"h],_(f7
Lys 2(2v—B) Fo(mo)
=g v
(D6b)
(3) F()I' ;‘{\vfr:}l, PII, 02:0, L2:0:
5 h
=08(0+j[2,300+ .
*0“[11 s+ (2- %N-)J[z N N
F =08 {0+ [y (2+w) — B, 500+ . . .} (D)

A“[;»,s: ) 13770.0
1% 2004 pwiv(p+2)—BlFo(ns,0)

=h J

Equations (D6) can be lincarly added to find the
behavior of ¢/(n—e0), Yo/, and Fy/Fy near 8, =0.
Replacing the constants L., Lz, and E, by A,
—B, and D, respecetively, then yields

©2 ‘(ﬂ) :
17T§00=A0(, Y Ayt yu—B) + (B—vw) f60]

+ Bl—p— (1 —wgbl+ D85 hé)+ . . . (D7)
_(L—E)
-;:116‘0 7 [—B+ (y+B)f60]+ B(1—2¢60)
+DO5[1+ (24 u)ho]+ (D7b)
%=Aﬂu( >>>>> >(’Y?f90)TB[(’Y B)— (2y—B) g0}

+ D6y (2+w) —Blhbe+ . . . (DT7c)

The constant .1 can be found by satisfying equa-

tion (B11). Thisis done as follows. Recall from
reference 1 that, near 6, =0,

HON{(H»I v— B) )
,

1 17y v~8
7; Fo(ﬂb,n)] (77”+1—7?g.+t11)}

0
77—¢0:(0’+1) 0_?
0

> (D8)

J

Evaluating cquation (D7a) at n,, and applying
equation (B11) then yield

lot1 1., a DY)
A:zilai [y—g Fn(.ﬂb.o):l 750 (DY)

for the present case.

CASE 8=0

The momentum equation becomes, near 6=0,
_((,_H)( >d leaf” ?7 soo) +F0nadr+{’13§_@
+0~2[(a+1)u—<1+2a)] e
+o h——~) 0 (D10)

where

» yoe YLPYHL 5 :Im
O =~ (c+1)n ’Y—l[ 2 Fo(ns,0)
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The following threeyindependent solutions result:

(1) For N=—1, P=2, G,=FE,=0,

— QA+ L=L

-

=0y [Ly +(1—p)M, 8+ . . -]
=00 (02 M0t - )

2= 10+ 29M, 83+ .. L) % (D11a)

(y—Dlo— (o114 ,
Lz‘l - o o ,!i‘

1.
dv(ot+ 1)”%"0 I:‘Y_; I’u("lb,o):] !
/ )
(2) For N=0, P=2, E,=@,=0:

L s S 2N A SR
N0

Yor_ . 48M, .00 ..
¥o
F2 2

Yo

-—‘YLz 2‘}'?’)’3[ 200+ e },

_ (y—=Dlle+ D= (1+20)utoly—1)]
L2,2-—. ﬁ'l

1 ¥
127(“+ 1)"1%‘.’0 [% Fo(ﬂb.o):l

Il
5N

(D11b)

(3) For N=pn, P=2, G,=L,=0:

e =030+ 20 00 - - )

%_80 [E-+ B+ u)M, 024 - - - ]

F,,

Fo=0 0+ Bt w M+ - - ] >
_ —aly—1)

E, vl

2y(0+1) G+ @unio| 75 Fat) |

(D1 fc)

NATIONAL AERONAUTICS AND SPAE ADMINISTRATION

Replacing the contants Ly, Ly ., and E; by A, B,
and D, respectively, and linearly adding equations
(D11) then yield

T = A0 1 (=) S+ B [—w+ 2—w) g6}

+ Dot (2h62) + (D12a)
Ve 1657 243) + BU1L+3903)
+ D051+ (3+w) hF] + (D12b)
i 105 (29508) + BOv-+3198))
+D05[Y (34w h6F] + (D12¢)
which defines the behavior of the dependent

variables near 6,=0. From equations (B11),
(D8), and (D12a), the value of A is

Y41 Y41 1y
A=1H e [ Ao | mse 013
for the present case.

CASEg=1

For this case, 1,,,=0 and (for 8, ~0)

fo - (y—1) )

b y(o+1)
86 yo+1
@2 y(@+1)

2y+o—1 (y=1 (¢—1)
=Koy 771 =K, veth

Y 2
v—1 'Y;" 1 FU(O)]*/—I

27+a—l
0 v (@+1)

o7
it

D14)

The momentum equation can then be written
_ 1-‘, ‘p"/(ﬂ ®o ] 1 (1(F2/£‘(Q
( )9 ~odg, TP

(100
o 2vletD) p—3y—yot+4n'" o
o= 270 1) e

3vytyo—2 _ (Fy ¥\ _ .
tor (et (F wo)”o (D15)
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The resulting three independent asymptotie solu-
tions are

(1) For I\~‘Y=——(fy_~l—>; P=2V,T?~1!G22Ez'f0,
.Y yio-1)
Ly=—~loy, My=—~M,
[z "7.,;][ ¢ Yy T
==y {[(y—1)+vul Lo
n—+¢o

Hoy—=D+y(p—P) M 05+ L

y—1
%zeo = L= (P DM 00 ]
(]

For , -2t . »
Ful 6 ~ (0—'}/2]):\[2,10‘(';—% o) \
(y=1e—-1)
M, [iy=1)Eyu] K, vetD {( y—1
L"l ')P["/P*'“Y‘1 1F6(0)
+5 57 (U et l) [(7*1 J2y(e+1)
3ytyo— ]
—3 4
y—yo+ H— T }
=f
,1)16(1)
5 o H-'y«%oA]} c o
()I‘ol\ -0, oI T E,-@G@,=0
~
%=’_#Lz,2+(p_ﬂ) ][2,205,'*_ e
Voo [ (P )M 80
Yo e )M 00+
Iy, P
T_(’Y D) Loty PH1) 1M, 00+ ..
.‘[2,2= \
Lo

{uly—1) [2v(e41) p—3y— d'y+4]’[x0(71(135:1)1i
27 (o +1) Ply(P+1)—1]Fy(0)

(r=Dle~)
0 ylo+1)

[(C—7y) By+yo—2)]K,
2v¥ e+ 1) Ply(P+1) — 1]F,(0)

+

i
=

J
(D16b)

¢ . ONT_ _27+U
(.3) FO[ :\——,U, P—— 'Y(U+1) ) Gz 12—0
N
B3 pr (04 PM, 60+ L)
@
Pet g 114 Gt P A0 ]
Pos_gn 10 L P 1) — 1) 0My 07 [
_F:_ 01 "{”['Y(#T + )— ] 2,350+ . }
Jl’._,_,q= (By+vyo—2) K¢ 77(];(;11)1)
Ey, 2y 0+ D) (Prwy(utP+1)—11F,(0)
Ell/ J
(D16¢)

Replaeing L, o, L, ,, and F, by o1, B, and D, respee-
tively, gives

@ -(=),.
—=Ag N My =1y v —1
n—®

=P f60} + Bl pt (P—p)g67]
+Do4(PROY)+ . . . (D17a)

y—1
—-=Aoo'<7)[— 1—(yP+1) f65] -+ B{1+ (P41) 6]

DO+ (k- P+ DAY+ ... (D17h)

VP[5 + B{(y— 1)+ [y (P+1)

g (=1
%=‘,100 (y‘r )(__
0

F+ Doy (+ P4 1) — 1] R65 + (D17¢)

— 1] g6F

The constant .1 is found as follows. Considering
only the leading terms, equation (D17a) can be ex-
pressed as

y—lyt+ye—

Ny =—— 5 __—K" 57y -1+ 0(n'*) (D18)
Noling cquation (B16), it is seen that
177
‘.1=lﬂ[ﬂ1«“0(0)] (D19)
yy—1L 2



APPENDIX E

DERIVATION OF EXPRESSIONS FOR DRAG

The drag on the portion of the body upstream
of any section %, designated D(x), can be found
cither by integrating the pressure distribution
along the body or by computing the energy of
the transverse flow at section ¥. Both methods
are used herein to obtain expressions for 1)(x).

INTEGRATION OF PRESSURES ALONG BODY SURFACE

The cases 8<t and 8=1 are treated separately.
Case g< 1. The forebody drag is given by

r 1Y)
Q;’—’:zrvfo PN AT A (E1)

assuming, for ¢=0, that the body is symmetrical
about the T-axis. But, from equations (13a),
(22a), and (23),

T,=8Lam (s 0+ er™)

- .7 NN .
d7,=8Lmzxm? [n,,_ﬁ—e (l—l——’fﬂ) r‘] dir
Cp p=262 M2V [Fy(n, 0) 4 e Fa(na) V]

Substituting into equation (E1) gives

D(I) P | »m{a+3)—3
S g (L)oo (100 ’
0
v
] -
Fitmo °

L e t3) -3 N r k2
re Fy (170,0) Mo ! ds (2)

Assuming
m>2{(e+3) (i.e., B<1) (E3a)
N>2—m(e+3) (E3b)
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integration of equation (E2) yields

D(T)

27r"m3(16”+3(z11,,,0)"+‘

=7_2F'u(770,0) ety -2 e[m(a+3)—2]
m(e+3)—2)"" T m{e+3)—2+N
N
- o+ 1+
r‘x(ﬂhn) 77”777”7/"79 J.m (¢+3)—2+N (E4)
Folnoo) Mo.0

Case 8—=1,- For =1, the zero-order flow field
corresponds to the flow over a flat plate (¢=0) or
circular eylinder (¢=1) with semithickness or
radius, respecetively, equal 1o 7y, Designate the
known zero-order drag of the nose (z=0) by Dy
as in reference 1. Then

7t
D(;) :I)Nﬂi‘Qﬂ'g(] f ! ('p'o(:-)-‘b)adib (E.’))
JB

where 7, is measured from the surface of the zero-
order body. From equations (13b) and (22a),

— i meY
To==8Le Ty T} (E6a)
- — m+i—1
di,=éLettm 1+ ot due {I6b)
Cp =282 VI, (0)40(e) (I6e)

Substituting into equation (E5) and integrating
vield, for N>0,

- . IGWUQ(I+#)69Fv(0)[/70(]j')]v+16 N
I)(J)*DN ‘{‘ (0’+3)%0’»’r1);¢ g

wherein m=2/(c+3).

(E7)
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DRAG FROM CONSIDERATION OF ENERGY OF TRANSVERSE
FLOW

The forebody drag D(T) can also be found by
computing the energy of the transverse flow field
as discussed in references 1 and 2

Let E be the energy (computed as a perturbation
from the undisturbed free-stream value) per unit
mass at any poinl. Then

pE=5| C.T-To+} |

_=[ 1 (P_P\, 7"
=72 (T 5)+ g ]
— AL, ( . pI‘“) ES)

From references 1 and 2

_ T _
D(J‘):‘Zvr"J_ _ el dy

rptr)

(E9)

where the integration is conducted at station Z.
But

F=81umy A
d7=sL4"dy
7,=14equr¥ > (E10)
m=mate® gl
= (eaM)ltD =1 J

Substituting equations (12) and (E10) into equa-
tion (E9) and neglecting higher order terms yield

D (@) _ [+ { o Vet
4,17,,.15 W (5[)u+1 (6+3)m—2 71 2

Fes |:qu \WPU % -% :I}n dy

= J.l ( l+%% dytex™

5,0

t//o
( Fy ¢()¢0
"5,0

dyg  (E11)

But, from cquations (24) and (29) of reference 1

1 2
f ( {;}I_*_lp(;pQ) 7° dn
7,0 Y bl

m 7575 Fo(ns,0)

=T B=1

(E12
g1 [ )

where I is tabulated as a function of v and ¢ in
reference 1. From the mean value theorem and
equations (15),

Theayr Yorh Fo | el
LG ) v (00

~ Ja=1
dea,
=;2_“] (E13)
Similarly,
m By o o g oFolmo) .
YO MR (R
oy ¢ P

Using the asymptotic forms noted in equations
(43) of reference 1 it can be shown

i , 1
3 )., Yot dr=g 3 i
[VT] (m, 0)] er for =0
=higher order for B>()J
(E15)
Define
= : \bn@o ¢ 2@, . ‘
e[l [t ()] ran mo

Substituting equations (E12) to (E16) into equa-
tion (E11} permits the latter to be written for
B=0, 0<8<1, and =1, respectively,

D(r)

4qmoatmE(sL) 1 petom-1
?71» "Eo(m,0) da, ")g.oFgr(ﬂn,o)
0o s
Ty+1
3y ]nZ‘oz[ m,o)] } for =0
(F17a)
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__L”__{lg,in]Fo(ﬂh,ro)’ N [ 4@27_"72, oI (nn o)

= (o) —2 eV | 14, v
for 0<8<C1 (EE17D)

da, Fo(0) ]

—1 (e+1)(¥—1)

=I+ea™| [,
I+ er ['+’Y
for g=1 (E17¢)
All the quantities on the right side of equations
(17) are known from the zero-order solution except

a, and I,, whieh are found from the perturbation
solution.

From equations (E17) it is seen that, when
m=2/(s-+3) (i.c., 8=1), the zero-order drag rises
discontinuously al r==0 and is constant for z>0.
This flow was referred to as a “constant energy”
flow in reference 1. Similarly, when N=2—m
(e+3), the portion of the drag associated with the
perturbation solution rises discontinuously at =0
and is constant for r>-0. FEquations (E17) are
more general than equations (E4) and (E7), since
the range of N is not restricted in the former
equations,




APPENDIX F

BOUNDARY-LAYER GROWTH ON SLENDER POWER LAW BODIES AT HYPERSONIC SPEEDS

The boundary-layer digplacement thickness on
slender power law bodies at hypersonie speeds
was found in reference 2 using the local similarity
conecept of reference 5. Tt was assumed in refer-
enee 2 that ¢ = 1, Prandtl number = 1, the body
is insulated, and viscosity is proportional to tem-
perature. A similar derivation for displacement
thickness is presented herein except that the o = 0
case is included and the assumption of an insu-
lated body is replaced by the less restrictive
assumption that the body surface temperature is
the same at all stations along the body. All
physical quantitics are dimensional in the present
section, and the superseript bar is omitted for
convenience. In the present section the syn:bol
u Topresents viscosity.

Following reference 5, the independent variables
s and # (where s is distance along the body and y
is distanes normal to the body) are roplacod by

~ P U, v
’7:@)17/2 [:] rlo- 5 dw/ (F1a)

$
g: f M:Pu”v"%‘_’f) (.[S (Flb)
JO
The subseript ¢ represents local free-stream con-
ditions just outside the boundary layer. A stream
function exists such that

o)
%—97”0 0
(F2)
oy .
=Py 0
reXj )
Assume
¥=(25)"(n) (F3a)
so that f/=wu/u,. Similarly, assume
bt . o
(hj—:g(m (Fsh)

where Ay, is the local stagnation enthalpy.  Tf it
is further assumed that
Pr=1 (IF4a)
LIS (F41)
Pelke

the boundary-layer momentum and energy equa-
tions become, respectively,

S Bl — ()= ,
and (F5)
g’ +fg—0

with boundary conditions

JO) =f(0)=0;f(n) > as g >
and

g(0)y=g, or g"(0)=0; g(7)->1 ax 7 >0

Here
- 25 dM,
BZJ . ds

(Fo)

Equations (F5) were solved numerically i refer-
ences 6 and 7 for various values of ¢(0) and g.
[Note: S=g—1 therein] The displacement thick-
ness for these solutions i (ref. 5)

1/2
pe— (25 f ("‘ “ di (F7)

750 pU
_(1+ w?)

Substituting equation (F8) into equation (F7)
permits the latter to be written

but

hangn: k)

P [(1+7 A ) )+ 15 \I"J]

ry b0 PeU,
(I')
21
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where

Ji= [T =i

Jzzfum [(—fds

Jazf (g—1)dx
[¢]

For a given ¢(0) and 3 the integrals J, and (J,+
J3) can be evaluated from the numerical results
in tables IT of references 6 and 7. Tn particular,

!
Jz—[f“”zm] s

Ji+Jy
A

(F10)
[[]mc] ref.

These results are summarized in table T of the
present report.  Additional values for the insulated
wall case (g(4)=1) are also included in table T,
as obtained from table I of reference 8.

The expression for 6% and 8 can be simplified
for the case of hypersonie flow over slender power
law bodies. For such bodies

U, =1u,
‘r m
rh.O*nb.Dal (L) (Fl])
Pe n(ﬂn n) d’b n>
L=y 2
pw i 770.0 dl

Consistent’ with equation (F4b), a constant w
can be defined sueh that p/T=wu, /T, or

—w - (F12)
(If u. i1s not proportional to 7, a mean value of
w is used.) Substituting equations (F11) and
(F12) into equation (FIh) and assuming s=z

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

permit equation (F1b) to be integrated. Sub-
stitution into equation (F7) then yiclds, for
(y—1DMZi>»1 and (y— DI E>1,

JI_LJi
& y—1 [w M. J<1+ ( )“"‘
L \27\ HCMS\ Fo(n,0) m\‘)"l(tf—rl)*l L
(F13)
where R, p=p, 1, Liu,. Similarly, since
o=t Me 1

a. a, @

S’\-' r.,m(,,+])-1

%*7—1 d(p./p..) (sentropic flow external
- (P/Po) to boundary layer)

a, 2y
equation (F6) becomes
¥v—1 2(1—m)

[3 -

vy 2moc41)—1 (IF14)

Equations (F13) and (F14), together with table
T, define the boundary-layer development on a
slender power law body at hypersonic speeds,
There appear to be several misprints in the final
expression for §*/L in reference 2. (The integrals
J, and J; are missing and m is in the numerator
instead of the denominator therein.)

The validity of equations (FI3) may be ques-
tioned for =1, o=1, since 7, 4,==0 for this case
and the right sides of equations (F1) and (F2)
arc identically zero. If r,4 is veplaced by ry in
equations (F1) and (F2) and if the assumptions
incorporated in equations (F11) and (F12) arc
again applied to permit integration of equation
(FF16), it 1s found that » has a logarithmic singu-
Jarity at #=0. It thus appears that the hyper-
sonic slender body approximations must be aban-
doned in order to obtain a boundary-layer
solution for the 8=1,6=1 case. Such a develop-
ment is beyond the scope of the present report.




APPENDIX G

AXIALLY SYMMETRIC BODIES AT VERY SMALL ANGLES OF ATTACK

In the present section equations are developed
which permit finding the effect of a power law
lateral perturbation of the centerline of a slender
power law body in a hypersonic stream. The
flow about axially symmetric power law bodies
at very small angles of attack is probably the
most important application of these equations,
The case B=¢=1 is excluded from consideration,

First, the equations of motion will be put in
cylindrical coordinate form. ILet (x,,0) be a

e

(&

eylindrical coordinate system such that r is in
the free-stream direction (sce sketeh (e)). Let
raw be the local velocities in the »,8 directions,
respectively.  Dependent and independent vari-
ables are assumed to be nondimensional (e.g., eqs.
(1) and (7) of the present report and eqs. (8a)
(8b) of ref. 4). The hypersonic slender body
equations of motion (e.g., cqs. (9) and (10) of
ref. 4) beeome, in eylindrical coordinates,
Conlinuity'

Opr Upl lbpu
+ i (Gla)
r~Momentum:
or, or, wor w’ lap
o o oh Ty (G1D)
0-Momentum:
ow bw wow vw 1 0p
or T or Ty be+ +p7‘ A6 (Glc)

Energy:
(G1d)

o) o, w

(a*’” o r 50> (W) 0
Equations (G1) reduce to equations (3) for the
case of two-dimensional or axisymmetric flow,
Assume a zero-order body and shock of the
form ry, o=mns,00™ and Ry=2", respectively. Tf the
centerline of the body is displaced loeally by a

small amount
P erNtm ((}2)
in the 7,z plane, the new body and shock locations

are given by

ry= X" (04 erY sin ) (G3a)

R=x"(1+eq™ sin §) (G3b)
where a, is a constant. For the case of a body at
positive angles of attack «,

e=—afs (G4a)

N=1—m }
p=p/2

From equation (G4a) it is scen that a must be
small compared with é.

Equations (G1) can be reduced to ordinary
differential equations as follows. Introduce new
independent variables &7 as defined by equations
(10). The dependent variables may be expressed
as

(G4b)

p=mE" e, et sind @)

w=meNT™ 1 cos 6 Qy

(G5)
p=(mg" N:(Fo+ e sin 0 F))
p=vu+e&¥ sin 6 ¢,
where ¢, I, ¢, and @ are functions of 7. Equations

(G5) are consistent with the boundary conditions
at the shock and at the body surface. Substitution
of equations (G5) into equations (G1) gives zero-
order equations identical with equations (14) and
perturbation equations of the form

23
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Continuity:
eV (% 7) &
17—¢0 Yo Yo T—¢o
7 o soﬁ (o4 u
n B L 2N N (G6s
T 77 Po Yo n(n—gp) : )a)
r-Momentums:
e 1 K
n—ey (n—e)® o F
(e41) <§~u>—¢6
+| - |
T—¢o n—¥o
- Gob;
+[(7J sﬁn) 1/’0]‘1/” ( )
8-Momentum:
8 ) @0
9 + U'+‘)( n . ]4‘10 | Ez;o
—¢o T mde(n—ey) Fo
(G6e)
Energy:
5 ‘l’2+ 7'/’t_l ﬂ)7 P2 ‘/’n (a+])# f/’g
Fo Hl/( \bn ro n—%0 o n—¥o Yo
% (o+1) (u— 6!] 1
=0 (God
ll/n %o r (6d)

The boundary conditions al the shoek can be
shown to be satisfied if

‘P:“)* 2

= ST Dl (GT)
F) r
At i etna-R @)
‘(‘;—?)=—¢6(1> (G7¢)
(1) -2 e
P (G7d)

The tangent flow boundary condition at the body
surface is satisfied if

("71) 0) (‘7'!“ ]) (’Y+‘Yﬂ 13)/7
@(0) = (y+yu—1/y
It can also be shown that Fo(n,)=F.(n,.0).

81 (GS8a)

c=0,8=1 (GSb)
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Asymptotic expressions for the dependent var-
wbles, valid near 5,4, are required if equations
{G6) arc to be numerieally integrated. The der-
ivation of these asymptotic expressions is now
outlined. The cases 0</p<{1 and 8=-0 are con-
sidered.  (The case 6=0, =1 can be found from
the equations in the body of the report, and the
case ¢=1, =1 is not being considered.) TFirst,
the equations of motion are written in the form
(treating o/ (g—ey), Fu/Fu, $aidn, and Q,/p as the
dependent variables and 8, as the independent
variable):

Continuity:

d (9’/‘:,«"(77— sao) ] ‘|l/ y l//r))
46, s,
0 (G9
O e el S
r-AMomoentum:
ﬂﬁz/’(ﬂ*%” ]i P2 ky  d(F,Fo)
deo By 1—e0 634‘3/.” dau

k. Y I
+03,(;,7,—( — )0 for 0L

Ju Iy
> (Gob)
dleftn—ea] | by @n  ky d(FUFY)
‘]00 Gy n—e Hu 6,
+- (%—% =0 for 8 ;O,

g-Momentum:

d(Q/n) L(_Zz__ ke Df .

7(100 00 7 841]+(‘6/7) Fuf (Gg(()
Encrgy:
d(FyFy) _ d (%/’tﬁo)

00(6 i +‘wr--—u 5 ) 0
(G9d)

dé, T o

where, for ;=0 and 0<B< 1, the quantities &y, ks,
., ks are constants given by

(5

e+t
1 N Fy 202 +1
ﬁ'zf(‘**] 070) ‘; 65 B = 121” [‘15’ = Fola, n)]
o 0 P

(G10b)

h—-é-—,u—i— _"‘PO (G10n)
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ldro ﬁltzﬂoo
for 0 1
ko= F (wo 9F(l("lbo) or 0<A<
{G10c)
(1Y B dR,_
b=(,15) 4 dg ot A
A 1 TB‘?,” (7*1 7 ("7?]0) |: - A
Te i Y (@D 4D, (‘Y+1)1‘0(77m)
(G1od)
B 12/ B T
ke=g—ut— =5 —u—p (G100)
CASE 081
Assume the dependent variables to be of the form
F, S‘+1F Lgl- B ]
EZGU [ 20-H 8y at .. ]
P2 N 1—(@/7)
17_%“00 [‘P.'nJrgo ent .- ]
- (G11)

Q .z
7':06\ (Do 65" FM Q4+ L. L]

‘/’2 g -~

=0 ot 0™t ]

[

where Fu, Fhy, ¢, ¢, and so {orth, are constants.
Substituting equations (G11) into equations (G9)
and collecting the coefficients of the Iowest order
terms, and the second lowest order terms, yield,
respectively,

N D (Vg2 —0 |
Yo lgse— W W o'+1_
—ky (N4 1) Fogt-Fapao =0 > (G12a)

(X'—{-A) Q=0
’Y(y :\ )\Pv0+6§020*0

en (\+4—~—w)¢u m’=

(\+2—
(Nk) <\‘+2-—~> Fy-lenp —0

<:‘\~'+ 1 —g‘f—lﬂ-—,) Qo —hyf20=0

¥ <#+"Bf— N— ]> Yo+ Ben=0
J
(G12b)

From cquations (GI2a), nontrivial solution

results 1if
Tt ()

These define four independent asymptotic solu-
tions. The constant coceflicients in equations
(G11) referenced to Fiyy may be expressed as

(G13)

- N
Yo =k2 (4‘7}‘15“ 1)
F ks

on_ == N) ¥
Fa B Fy

¥

80.’0
—nu)- Fun

—f—(aqu])[(\’ +1

S ke
Fu B8
Sp1="tk |G

P21 i Q9

Fog (ﬁv 0 28 Fy
(S +2—7)

il/__ 8 P21
r" (SL—{-[ ——p—-g r)ﬂ

P3”44V+l ) 20
O A (‘\r+{) 20,

o

CASE 8=0

Assume the dependent variables to be of the form

Fol g ;
fo_‘eu ( 20+00 a4+ .. )
:05(90204‘0(2]&021‘!“ e )

Q% s - (G15)
—,'72:037(920%“ 9(2)921*5— - )

Yot it )

¢0— Q 20 u¥21 e

J

Substituting into cquations (G9) and collecting
the coeflicients of the lowest order terms, and the
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second lowest order terms, yield, respectively,

~ 2 Q20 )
(N E D= (N—m)do— 5 =0
(N1 k) esn—ka( N2 Faot bog=0 > (Gl6a)
(N4 ks) Q=0
(u— N )m—0 /
(N3 gn— (N42— p)go— Jr] —=0 ]
(N 24 k) on—ha (N4 4) Pt e — ey Foo=0 L
(V4 24k) Qu— kT o =0
(V42— ) (Foo—vgp) =0 Y
(G16h)

From equations (G16a), a mnontrivial solution
oxists if

Ne —kyw, —1,—2 (G17)

These define four independent asymptotic solu-
tions. The coefficients in equations (G15), refer-

CTICQC

a0 l (:\7 )

for f\“;:—k_.-,, —1
o Xtk
=0 for N=p, —2
(N2 ~
@=A2(4>+~) f()l' j\Y:,u
20 3
=0 for N=—f,, —1, —2
&) (U% ]) \»,;1“\+))]” for i':—/t‘s
Fao Ntk
=0 furirﬁp,—],——‘Z
QEI___““k-! B
FZU "\VV+ QTIL;,
ﬁzl
Fo v
P21
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1 to Fy, are

ry

Fy_
F;l)

1 [(
F(N+4)

] N 2 ] Q-)
= | (N 2—p) 37 _;1:'
20 ;\Y—§—3 [ ! # fgn_i_ﬂ’—*" 1 [’20

L2 k) ;°~’i.+zgl" A:|

(G18)



APPENDIX H

APPROXIMATE SOLUTION FOR HYPERSONIC FLOW OVER SLENDER BLUNTED WEDGES AND (ONES

Chernyi, in references 12 and 13, has developed
an approximate solution for hypersonie flow over
slender blunted wedges and cones.  For the case
of very slender wedges and cones, his approximate
equations can be integrated in closed form and
the results can be compared with those from the
zero-order and  perturbation equations of the
present report.  This 1s done herein.

First the derivation of Chernyi’s equations will
be outlined.  The forebody drag up to station T
is cqual to the energy of the transverse flow at that
Thus

station.

7 R(D
D+ 27r"Jv p,,r,, = f ( redr
l ’b(I)
(H1)
where Dy is the impulsive drag at ¥=0. For the
present problem

TIntroduce the following nondimensional quantitics:

1 1

= [ 283N\ 8,7 = /2N T
~(EVE T

C Dy r v ( Dy N

(H:3)

= _Z’__ =_r =_ 0
p= ¥M?2, 502700 P P Sl
where

Cog= D] (‘ 7 ‘2) @1 e rgt)

Substituting equations (I12) and (H3) into equa-
tions (H1) yields

1 (e = 1
2—”+.[; Pl (l.r,—_y 1J$ T (11+ pp od7t

2

(H4)

Assuming p and v arc constant in the integrals on

the right side of equation (H4) and taking =70
- = R

yvield l:no\in r ry==x, and, from (‘ontinuit_\',ﬁ pre

Ty

A= T x)]

I'a-{l r"“ ‘2—72
—rf Dox (lr— _— ( e )+Z

Chernyi further assumes that the entire mass of

ﬁo-{‘l\ .
i1) T

the disturbed flow is concentrated in the shock
wave and moves with it. This assumption is
nearly valid for strong shocks provided v is near 1.
Thus, Chernyi takes

?:dﬁ/d?

=3

(IToa)

and (from conservation of momentum of the mass
concentrated in the shock wave)

4 Ty

e

(Heh)

D=

>Jll
A=

(2R)

Substituting equations (H6) into equations (IT5)
vields

1+J[ (7:,); (R R)AF
Iz

d 7 B
ey

Chernyi numerieally integrated equation (H7) for
y=1.4, ¢=0, T; the results are plotted in references
12 and 13.

Equation (TT7) ean be solved by series expansion,

/)a+l _T‘J-H

(1T7)

] -
for small z, and the results compared with those
from the more exact zero-order and perturbation

solutions of the present report.
of the form (for small z)

— 2 1 o1
[.J_I(Trk-‘i[]_{ag (K_ra+€) + .- :l (I18)

where A and «, are unknown constants. Sub-
stituting equation (AS) mlo oquutmn (H/) and
colleeting terms of ovder % and TtV et oo

_ 173 )
K=<9 (‘.Y,,l_)) !
2y .

3v—2
arg Y 1 1Y

2(2y+1)

2y
YY)

o
Thus assume £}

=0

(H9a)

o1

(TT9h)
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The pressure coeflicient on the body 1s given by

Cpr__o% 20 d ( So+1 )
Ll==2 = Rt
& 7 Raz

Substituting equations (H8) into equation (H10)
and comparing with equation (51b) show

(T110)

Fy(0)=1/2 ¢=0,1

. _53y—2

[Km—42¢+1 o0 (I11)
_227—1 1
BEE 2 e

These expressions for K, a,, Fo(0), and F,(0) may
be compared with equation (50¢) and the numeri-
cal results of table TI. Such a comparison is
given in table TTI.  Chernyi’s approximate solution
becomes less accurate as v departs from 1.

Although the method of references 12 and 13
is inexact, particularly for 4 not near 1, it has the
advantage of not being restricted to small values
ol T (as is the perturbation solution of the present
report).
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TABLE 1. BOUNDARY-LAYER PARAMETERS
gw /‘é JZ —J] +J:‘
Js
0 - 0. 14 0. 495 0. 134
0 . 468 0
.50 . 4235 —. 257
2. 00 . 383 —. 538
0.2 —0. 14 0. 504 0. 692
0 . 468 . 518
.50 . 409 . 199
1. 50 . 366 . 083
0.6 --0.20 0. 554 2. 034
0 . 468 1. 555
. 50 . 380 1. 185
2. 00 . 204 . 759
1 0 0. 470 2.59
.05 . 452 2. 53
. 10 . 435 2. 48
. .20 . 408 2. 41
.40 . 370 2.33
. 60 . 336 2,27
. 80 .32 2. 24
2 —0.10 0. 543 5. 67
0 . 468 5. 18
.30 . 333 5. 49
. 50 . 274 6. 01
1. 00 L1765 7.85

7 wherein g, =S, +1,
Ruu]ta for g, 1 are
I T,=11.

Results for ¢, # 1 are from refs. 6 and
BEI?) ']2E lllf:-; (Jl_l—!ll)(‘fJZE Ilmc

from ref. 8 wherein R=8..J.=8, (J;-
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TABLE II.—RESULTS OF NUMERICAL INTEGRATION OF PERTURBATION TQUATIONS

o=10 =1
¥ B
Casc 7 az Fua(ns,o Case T @z Fa(n0)
.15 0 (=) -1y 1. 16 0. 708 (=) —O}; }gj (]) gg?
O] ] 1. 07 2.00 | ... . .
% (= =13 1. 29 1. 18 (=) 0 1. 06 1. 64
______ 0 1. 12 17t
® 1% 1. 04 2. 09
12 () — 1% 1. 34 .39 | ______ 0 1. 08 1. 49
______ 0 117 1. 58 Q)] % 1.02 1. 99
0} 1 974 2.03
7 0 1. 40 L % S T 0 1. 18 1. 31
gn) Yo 1.15 45 0] 5%a 734 1. 96
) 14 . 603 1. 56
1 ((.)) :4 0. 325 0. 5gg Q) 1 0. 0518 0. 503
b e ! . 188 . 48!
1. 4 0 (» 1 1. 44 0. 869 () -1 1.13 0. 843
Q) 0 1. 20 200 | ... 0 1. 09 1. 91
Yy (=) -4 1. 77 1. 39 (v 0 (AR E| 1. 59
______ 0 1.32 1.76
™ % 1. 14 2. 03
¥ O] - 1. 86 L6t | ... 0 1. 19 1. 45
______ 0 1. 44 1. 67 (=) 14 1. 06 1. 87
®) ok 1. 02 1. 90
/S 0 195 L77T ... 0 1. 38 1. 20
(= ,;.’c, 1. 44 1. 53 (= 6 . 655 1. 65
Q) s . 660 1. 36
1 (=) 1y 0. 443 0. 611 ) 1 0. 0389 0. 643
(G i 217 . 555
1. 67 0 (» —1 174 0. 934 (=) -1 1. 20 0. 823
™ 0 1. 33 2,00 | ... 0 115 1. 86
4 (+) -1 2. 28 1. 55 (» 0 1. 22 1. 55
L 0 1.52 1.78
Q] % 1. 25 1.99
Y () -4 2. 40 .82 .. 0 1. 29 1.40
______ 0 171 1.73 (= ig 11t 1. 80
® ot 1. 10 1. 84
B0l - 0 2. 48 |13 N 0 1.53 1. 24
Eu) ;/.'.-. 1. 73 1. 59 (=) 51y . 645 1. 53
b) ¥ . 701 1. 31
1 a) 1 0. 546 0. 670 G 1 0. 0204 0. 828
(> 3 L 244 . 605

* Effect of boundary-tayer development.
b Effect of small angles of attack.
e Tiffeet of wedge and cone nose blunting.
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TABLE ITT.—-HYPERSONIC FLOW OVER (VERY SLENDER BLUNT-NOSED WEDGES AND COXNES
=1, u={(c+1)/2)

|

U.S. GOVERNMENT PRINTING OFFICE: 1960

Present numerieal solution Chernyi approximation {eqs. (I9) and (IT11)) !
o Y - _

_ ! i
K L8] Fy(0) (0} K az Fy(0) F,(0) ;

0 1. 15 . 938 0. 188 0. 415 0. 483 0. 837 0. 220 0. 500 0. 549
1. 40 .23 . 217 . 325 . 555 1. 09 . 289 . 500 L7244
1. 67 . 49 . 244 . 264 . 605 1. 22 . 347 . 500 . 866 |
|
|
1 ; 1. 15 .04 0. 0518 0, 411 0. 503 1. 01 0. 0756 0. 500 0.520 |
X 1. 40 .34 . 0389 . 311 . 643 1. 23 . 0938 . 500 . 656 !
i 1. 67 .54 . 0294 . 241 . 828 1. 34 . 110 . 500 . 764



